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SUMMARY 
The motion of a moored floating body under the action of wave forces, which is influenced by fluid forces, shape 
of the floating body and mooring forces, should be analysed as a complex coupled motion system. Especially 
under severe storm conditions or resonant motion of the floating body it is necessary to consider finite amplitude 
motions of the waves, the floating body and the mooring lines as well as non-linear interactions of these finite 
amplitude motions. 

The problem of a floating body has been studied on the basis of linear wave theory by many researchers. 
However, the finite amplitude motion under a correlated motion system has rarely been taken into account. 

This paper presents a numerical method for calculating the finite amplitude motion when a floating body is 
moored by non-linear mooring lines such as chains and cables under severe storm conditions. 

KEY WORDS. moored floating body; finite element method; moving boundary problem 

1. INTRODUCTION 

We have previously given an analysis of finite amplitude waves on an arbitrary surface of the seabed by 
the finite element method under coupled motion of the fluid and a floating body,' as well as an analysis 
considering non-linear drag forces caused by the viscosity of the fluid.' 

This numerical method is divided into three parts as follows. 

1. Analysis offinite amplitude waves on arbitrary surface of seabed. The finite element method 
(FEM) is used to solve the boundary problem of the velocity potential satisfying the non-linear 
free surface boundary condition. A simplified technique for open boundary treatment on a virtual 
boundary is presented. This numerical method can be easily applied to random as well as regular 
waves. 

2. FEM analysis for non-linear coupled motion system. First the velocity potential on the surface of 
a floating body below sea-level is expressed as a fimction of the unknown finite displacement of 
the floating body. Then the solution satisfying conditions of both floating motion and geometry 
for the surface of the floating body below sea-level is followed successively as an unsteady 
coupled motion system. Since the momentum equations of the fluid and the floating body are 
solved at the same time, this numerical method does not require prior calculation of the added 
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3. 

mass or the damping force. In contrast, the added mass and the damping force must be 
considered for the ordinary momentum equation of a floating body. 
Numerical analysis for mooring lines subject to non-linear fluid forces. Unsteady, non-linear 
analysis of mooring lines subject to a finite amplitude wave force and the reaction force of 
floating motion is taken into account. 

2. ANALYSIS OF FINITE AMPLITUDE WAVES BY FEM 

2.1, Fundamental equations 

We consider the coupled motion of waves and a floating body in a two-dimensional domain as 
shown in Figure 1. Assuming the fluid to be incompressible, inviscid and irrotational, the fluid motion 
can be represented by the velocity potential 4. The fluid region V(q), which is a function of the free 
surface displacement, is bounded by the free surface S1, the rigid bottom boundary S2, the open 
boundaries S3 on the left and right and the floating body’s surface S, below sea-level. Since the motion 
of the floating body is a moving boundary problem governed by the Laplace equation in the fluid 
region V(q), the governing field equations and the boundary conditions may be expressed as follows: 

(a) in the analytical region V(q), 

(b) on the free surface S1, 

g+; [ (g)2+($)2] + g q  = 0 ,  

(c) on the bottom boundary S2, 

= 0, 84 - 
an 

(d) on the open boundaries S,, 

- a4 - -3 
an a n ’  

(e) on the floating body’s surface S4, 

Y 

(3) 

Figure 1. Definition sketch and co-ordinates 
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where n is the outward normal to the boundaries, n,, is the direction cosine of the normal with respect to 
the y-axis, 6 in (5 )  is the velocity potential outside the fluid region and the right-side term of (6) is the 
velocity component normal to the floating body’s surface S4 below sea-level. 

2.2. Variational principle and formulation by FEM 

We can analyse the stationarity conditoin for a hctional i( at time t via the following equations 
from the variational principle with respect to the moving boundary problem: 

where the only independent variables are 4 and q, so @/at,  dqldt, d4’ldn and ailan are regarded 
as constants. The velocity potential I#I can be expressed in equation (9), approximated by linear 
functions of x and y, if we divide the analytical domain V in time into a set of triangular elements and 
express the velocity potential 4 in an element (i, j ,  m) as the joint value Q, = [& q5j, +,,,I: 

Q, = [ N 2 , 4 , N m ] Q ,  = “I@, (9) 

1 
- -a=--[ 2A c;, cj, Cm]@ = CTQ,, ?- El 

where, for example, N; = (1/2A)(ai + bix + c;y), ai = x,ym - X d j ,  b; = yi - y,,, and C; = xm - xj. The 
various values of $J on the surfaces S1, SZ, S3 and S4 are expressed via the joint value on the boundary 
of a triangular element as follows: 
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~ 

a@ a@ 
at -= - = at 

where [Ns] = [Ni, N,], [Nil = [N:, N;] and the superscript asterisk indicates a value without variation. 
Therefore equation (7) can be expressed as the joint value of a finite number of elements and we obtain 
the following equations by applying the variational principle and stationarity condition for 64 and 6q: 

where 

However, the analytical domain is a function of the independent variational function q and the body’s 
surface below sea-level is a function of the displacement due to the body’s motion (Figure 2). Thus the 
boundaries S1 and S4 are functions of the unknown displacement and we have to solve non-linear 
simultaneous equations; namely, if nth-order approximations at time t are known, then (n + 1)th-order 
approximations follow as 

I - 
X 

Figure 2. Elements on free surface 
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Accordingly, the non-linear shape functions B, C, S and S* are corrected as 

299 

(16) 

where 

cicj ClC,  

c,ci cmcj c,c, 

NT = [ci, c,], LT = (bj/lo)[ - 1, 13 and lo is the nth-order approximate length of the line Z. In 
addition, in the set of equations obtained by substituting equations (17) into equations (13) and (14), 
the higher-order terms of dd and dq can be neglected. For the time terms we employ a finite difference 
method which uses the Heaviside function 8, where the superscript k denotes the value at time t - At: 

We employ the same time finite difference method for du/dt. The boundary S3 is an open boundary on 
the right and left which is set up in the fluid; the motion of the fluid has to be continuous inside and 
outside this open boundary. Here we employ a method which satisfies the continuity of mass flux and 
energy flux with computational time on S3.3,4 

2.3. Open boundary treatments 

A particular concern is the open boundary treatment of finite amplitude waves at the boundary S3, 
which uses the mass flux and energy flux because of the continuity of fluid motion. This numerical 
open boundary method can be easily applied to random as well as regular waves. 

As shown in Figure 1, in general the input flow open boundary S, has a known incident wave and an 
unknown reflected wave, while the output flow open boundary has an unknown transmissive wave. For 
the case of a small-amplitude wave the unknown function at the input and output open boundanes is 
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defined and can be analysed as for the periodic case. However, for the case of a finite amplitude wave, 
because it is very difficult to define the general form of wave components exactly, it is necessary to 
treat the problem as an unsteady one. Each open boundary S, is an imaginary boundary established in 
the fluid; the motion of the fluid has to be continuous inside and outside this boundary. 

Here we describe a method of analysis which deals with the vertical distribution of velocity at the 
imaginary boundary as a function of the surface displacement while satisfying the continuity of mass 
flux and energy flux on the surface of the imaginary boundary with time, under the condition of 
continuous motion of the fluid in the domain of analysis of the imaginary boundary. 

We express the velocity potential 4 at the input and output flow open boundaries S3 as the 
summation of an infinite number of component waves on the left and right of boundary S3 as follows: 

M m M 

iiq = C 6ii + C i n n 1  6out = C i t n  (l,m,n = 1,2 ,3 , .  . .), (19) 

where 4, and itn denote the I - ,  m- and n-components of the incident, reflected and transmissive 
waves at any time respectively. Although iii is a known quantity, since the reflected and transmissive 
waves represent an unlimited set of unknown quantities, we cannot analyse the problem as it stands. 
Therefore we select representative waves 3, and $, in each propagation direction and express the 
unknown terms of (1 9) approximately as 

These equations denote ‘the wave of the sum total’ of component waves in each propagation direction 
and deal with this wave represented by a wave which has an unknown constant approximately. 

When the continuity at boundary S3 is introduced into the functional x, the corresponding values of 
&$/an in (7) are given as 

where the boundary S3 is kept parallel to the y-axis, 1,. and lxt are the direction cosines of the normal 
drawn outwardly with respect to the x-axis, hi and h, are the depths of water at each position and k and 
a of each wave satisfy the dispersion equation. 

Moreover, qi denotes the free surface displacement of the incident component wave and is known, 
while A: is the unknown variable of the reflected wave. A: is the free surface displacement of the 
transmissive wave; this unknown is expressed by the free surface displacement qout at the transmissive 
position via (22). This is equivalent to using the first term of Dean’s streamfunction to estimate the 
inner velocity from the free surface displacement record. A: is the only new unknown variable here 
with regard to the imaginary boundary. 

Thus we consider the continuity condition of the energy flux -p(a’/at) (a4/an) as a new 
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condition in order to determine the unknown variable. This condition J(a$/dt)d& = J(a$/at)dS3 is 
represented at the input flow open boundary as 

By considering the continuity conditions (21) and (22) and equation (23) for the motion of the fluid at 
boundary S3 and calculating them and the equation which has already been introduced in (7) 
simultaneously, we can get simultaneous equations of many dimensions which relate d& dij and A: as 
the unknown variable. By adding a proper basic condition to these equations, we can calculate the 
unsteady motion of the finite amplitude waves in optional forms or at optional boundary domains 
which correspond to the incident waves being considered. The method stated above for the imaginary 
boundary S3 can be applied not only to regular but also to irregular waves. Moreover, at the boundary 
S3, for the case of incident waves produced by the motion of a wave-making plate or the like, by 
adding the velocity to them according to (21) at the corresponding position, we can also calculate 
these. 

3. ANALYSIS FOR NON-LINEAR COUPLED MOTION SYSTEM 

3.1. Condition ofjloating body 5 surface below sea-level 

We can analyse the motion of the fluid if the velocity condition of the floating body’s surface below 
sea-level, a4’/an, is given. We define the co-ordinates of the centre of gravity of the floating body at 
rest as G(XG,YG) and we define the displacements due to swaying, heaving and rolling motions from 
the stationary points as 5, 5 and o respectively. Since the co-ordinates of the surface of the floating 
body below sea-level are a function of these displacements, 4’ can be expressed as 

4KY’, t) = 4”5, w),g(5, w), 4 .  (24) 

In the analysis of the problem of wave occurrence due to the body’s compulsory motion, 5, 5 and o 
in the above equation are known. Accordingly, we can use the same method as before, since af$‘/an is 
given according to the body’s displaced position. On the other hand, in the case where the motion 
system is influenced by interactions between the wave and the body, the details are as follows. Figure 3 
shows an element of the surface below sea-level. When the node (i, j) is displaced by (dx, dy) from the 
nth-order approximation, the increment of the triangular area (i, j, m) is 

A = A0 + 4 [by, by, b:]dx + 4 [c;, Cj7 c,]dy, (25) 

where dxT = [dx, dxj, 01 and dyT = [dyi, dyj, 01. Now 847th is calculated via 

where 



302 

I 

K. TAKIKAWA ET AL. 
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X 

Figure 3. Elements on floating body’s surface below sea-level 

bibi bibj bib, 
(27) 

-1  
C2 = B1. 

In equation (25), (dx, dy) is determined by the displacement of the body. When a point (XJ) apart 
from the gravity centre G of the floating body at rest moves to the point (i?,y) with the motion of the 
floating body, it is expressed as 

x’ = XG + 5 +xcoso  -7s ino  3 xb + dr‘, 
y’ = j i G  + [ +%sin0  +ycosw -yh + dy’, 

Besides, by employing the incremental method, (n+l)th-order approximations are expressed by nth- 
order approximate solutions (CO, l o ,  wo) plus increments (dt, d[, do), so we obtain 

dr‘ = d t  - (X sin 00 + 7 cos oo)dw, 
dy’ = d l  + (3 cos wo - j j  sin w0)do. 

From the foregoing theory the relations between 4’ of the floating body’s surface below sea-level 
and the finite displacements of the motion of the floating body are given. The velocity of the floating 
body’s surface below sea-level, ad‘/& is expressed as 

where 1, and ly are the direction cosines of the normal to the floating body’s surface below sea-level 
with respect to the x- and y-axis respectively. By substituting (29) in (30), d@/dn can be expressed as a 
function of the motion velocity of the gravity centre of the floating body (dtldt, dcldt, dwldt). 
Therefore we regard the displacements of the gravity centre of the floating body (dt, dc, do)  as the 
new unknown displacements. In employing the foregoing theory, we should analyse the following 
equation of motion of the floating body at one time. Here the geometric conditions of the floating 
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body’s form are satisfied by employing x’ = x; + dx‘ and y’ = y; + dy’ fiom the computational results. 

3.2. Momentum equations offloating body 

The momentum equations of the floating body in each direction are expressed as 

where M is the mass of the floating body, I is the moment of inertia, FH, Fv and F M  are the reaction 
terms of the mooring lines, Tv is the vertical component of the mooring forces at rest, pH, pv and pM 
are the horizontal and vertical components of the fluid pressure and the moment of the fluid pressure 
acting on the gravity centre of the floating body respectively and FDH, FDv and F D M  are the 
components of the non-linear drag forces caused by the viscosity of the fluid. 

The normal fluid pressurep on the floating body’s surface below sea-level at (2, y’) can be expressed 
in terms of the velocity potentials as 

where $x = a4/ax and 4,, = a4/?~. By employing (32), we can express the pressure components as 
p H  =pl,, pv =ply and p M  =pe (where e is the distance of eccentricity between the gravity centre and 
the point (2, y’)). 

The drag forces caused by the viscosity of the fluid are expressed as a function of the difference 
between the particle velocity u and the velocity of the floating body motion, v: 

where V =  u - y CD is the drag force factor and S is the area of projection. This is explained in more 
detail in Reference 2. 

3.3. Reaction forces of non-linear mooring lines 

Figure 1 as 
If the mooring lines are linear, such as springs, their reaction forces can be expressed in terms of 0 in 

where K is the coefficient of spring stiffness and A1 is the increment of the mooring line (a function of 
the setting point of the mooring line). 

However, if the mooring lines are non-linear, such as cables, we have to analyse for non-linear 
mooring lines at each computational step. Because of the displacement of the setting point, the reaction 
forces of mooring lines and the mooring lines themselves are non-linear. Here we employ catenary 
theory and the lumped mass method. 
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3.3.1. Catenary theory. We consider the displacements of the setting points of lines moored to a 
floating body and the extensibility of the lines by catenary theory using the static equilibrium equation. 
However, we cannot take these into account as they stand, because the displacements of the setting 
points themselves are finite and unknown. Therefore we employ the incremental method and deal with 
them linearly. Concerning the setting point A of mooring lines and the position of the gravity centre G 
of the floating body shown in Figure 4, we can express the unknown (n + 1)th-order approximations in 
terms of increments to nth-order approximations known at time t. Then the reaction forces of the 
mooring lines at this time are expressed as 

F(xo +   yo + dy) = Wo,yo)  + w d x ,  dy). (35) 

When we take up to first-order terms in a Taylor expansion around nth-order approximations, the 
displacement (dx, dy) of setting point A and the increment of reaction forces (dF,, dF, 
of mooring lines are expressed as 

dFx = C, dn + C;x dy, 

f l y  = C$ dx + C, dy, 

where C, is a linear spring constant of catenary theory6 and CG = CG; the superscript asterisk 
indicates a difference in sign between the weather side ( W S )  and the lee side (LS). These linear spring 
constants differ between the taut and slack states of mooring lines and therefore have to be taken into 
account in the analysis. The reaction forces of mooring lines in (31) are expressed as 

where (Fx)o and (Fy)o are nth-order approximations. The setting point displacement (dx, dy) is 
expressed by the displacement of the gravity centre of the floating body as shown in (29), so we can 
analyse it because the reaction forces of mooring lines are a function of (dt, dry dw). 

3.3.2. Lumped mass method. When the motion of the floating body is large, such as under severe 
storm conditions and close to the point of resonance motion of the floating body, we cannot neglect the 
motions of the mooring lines themselves and the drag forces working there, so we have to analyse the 
dynamic condition. There is a method available that takes into account the motion of mooring lines by 
catenary theory.’ However, as shown in Figure 5, we instead divide the mooring lines into line 

Figure 4. Cables and co-ordinate system for motion of floating body 
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elements and perform the dynamic analysis by the finite element method (FEM), treating these 
elements as the motions of a mass system with concentrated mass. 

Referring to Figure 5 ,  the equations of motion and the equation of geometric conditions are 
expressed as 

where pxi and pYi are the components of the fluid forces acting on the mass in the x- and y-direction 
respectively. They are connected with the fluid forces pri and pVi in the local co-ordinates (z, q) of 
mooring lines by 

We varied the acceleration terms of (38) with time and arranged (39) about tensions T to give 

First we give the setting point position of mooring lines at time t as the boundary condition; 
secondly we revise the tensions in the above equation by using nth-order approximations for mooring 
lines; finally we look for (n + 1)th-order approximations one by one. 

4. NUMERICAL RESULTS AND DISCUSSION 

The models and experimental conditions for experiment and computation are a floating body moored 
by cross-springs or cross-chains with two-dimensional rectangular cross-section, as shown in Figures 6 
and 7 respectively. 

Figure 8 shows the time history of the amplitude ratio [ / u  between the vertical amplitude of motion 
of the floating body, i, and the amplitude of the incident wave, a, when the floating body is moored by 
cross-chains as in Figure 7, assuming a wave period T= 1.61 s. The experimental results relate to the 

Figure 5 .  External forces and co-ordinate system acting on concentrated mass 
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I.1 a = 4  4 (cross spr ing)  

Figure 6. Floating body moored by cross-springs 

G(x;.Yc! 
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method corresponding to the VTR scene, while the present numerical solutions relate to the method of 
analysing mooring lines approximately by catenary theory, with the analysis performed under the 
condition near the resonance point of the motion of the floating body. The present numerical solutions, 
although slightly larger than the experimental data since they neglect the drag force terms of the 
motion of the floating body, agree very well with the experimental results. 

Figure 9 shows the present numerical solutions and the experimental results as an average of the 
time history of tensions when the upper edges of the cross-chains are vibrated by compulsion, i.e. 
dynamic analysis of the mooring lines. Here each chain of length S= 115 cm and unit weight 
2.317 gf cm- is vibrated horizontally on the upper edge with amplitude 1.6 cm. In the dynamic 
analysis of the cross-chains we take into account only the vertical component of drag and use the 
coefficient of drag forces CD = 1.8 and the coefficient of added mass C, = 2.0. The present numerical 
solutions, although a little smaller than the experimental results, show very good agreement, because 
the difference is due only to the value of the coefficient of drag forces. 

Figure 10 shows the numerical results for the time history of the velocity fields around the floating 
body by the present analysis for the floating body moored by cross-chains. We calculated the mooring 
lines by catenary theory one by one. First, the finite amplitudes of the free surface displacements and 
the floating body's motion are seen. Secondly, the taut state (NT in Figure 10) and the slack state are 
apparent and the situation related to the centre of the corner is clearly evident. These numerical results 
agree well with the experiments. 

Figure. 11 shows the time history of motion (ratios </a, [/u and w/a)  of the centre of the floating 

(XG. YG)'(O, - 9 . 7 5 )  

chains  'I = 7 .  7 0 ( g r / y 3 )  uo,i 
L a  ! 

Figure 7. Floating body moored by crosschains 
I 
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' = 1 3 ] E I / L  : 0 .  0 1 

- 3 j  
Figure 8. Vertical amplitude ratio of motion of floating body moored by crossshains 

-140.8 I I 
I a )  T = 4 sec.  

Figure 9. Tension vibration on upper edges of cross-chains 

_. _. I . . _. _. . . 

_. . .. . . .. . . 

o&* N . T  
( 1 )  t /T=19. 50 u ,aG 

Figure 10. Motion of floating body and time history of velocity fields near floating body 
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b -31 

Figure 11. Time history of motion of floating body's centre in regular waves 

body moored by cross-springs in regular waves (azh /g=  2.0). When the steepness of the incident 
wave ( H / L )  is small, the motion in each direction is sinusoidal. However, when H / L  is large, a finite 
amplitude of coupled motions is apparent; a low vertical motion ratio and long-period displacement 
components in swaying and rolling motions are seen. 

Figure 12 shows the same history of motion in random waves with a spectrum corresponding to 

A complicated motion appears corresponding to the incident wave characteristic; long-period 
displacement components in swaying and rolling motions are produced with increasing wave 
steepness. The drift force acting on a floating body subject to regular waves has so far been treated as a 
steady force. However, it is evident here that this drift force clearly causes long-period displacement 
components even in regular waves when the finite amplitude motion including high-order solutions of 
the potential is computed. 

Figure 13 shows the spectrum of each component of the motion of the floating body derived from 
the results in random waves shown in Figure 12. The vertical axis is the power spectrum of the motion 
ratio and the horizontal axis is the ratio to fiequencyf, of the incident significant waves. When the 
wave steepness H / L  is large, we observe a decrease in the peak value near resonance points 
(f/fm = 1 .O) in the heaving motion. We also find that swaying and rolling motions appear at zero 

(a2h/g),,3 = 2.0. 

r: 
'. - 2 1  H/L=O.OI  

; -2' ' 
b 

-. I j  swaying A heaving o rolling 

' 2 1  H/L=O.O3 

; -2' 

Figure 12. Time history of motion of floating body's centre in random waves 
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1:1--- \ 

(a)  The  spectrum of swaying motion 

‘;‘1 \ 

( i n c i d e n t  v a v e s ) l  

1 

(b) T h e  spectrum of heaving motion ( c )  T h e  spectrum of rolling motion 

Figure 13. Spectra of motion of floating body 

frequency and at long period, with the peak value increasing with H / L .  These indicate both steady drift 
flow and fluctuating drift flow. In this way we can evaluate the characteristic of this motion by the finite 
amplitude analysis of the coupled motion of waves and a moored floating body. 

5 .  CONCLUSIONS 

The main results obtained by this present non-linear analysis are as follows. 

1. When the amplitude of motion of a floating body increases with increasing wave steepness, there 
is a tendency towards a decrease in amplitude ratio of the floating body motion to the incident 
wave. This decrease, being one of the characterisics of a non-linear motion to the incident wave. 
This decrease, being one of the characteristics of a non-linear coupled motion system, cannot be 
explained only by the drag force arising from the fluid viscosity, because it includes the effect of 
finite amplitude interactions. 

2. In studies based on linear waves theory the drift force acting on a floating body subject to regular 
waves has been so far treated as a steady force. However, it is shown here that the drift force 
clearly causes the fluctuation of low-frequency oscillations even in regular waves once the finite 
amplitude motion is computed. 
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